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Using the chicken to measure IT?

Measurability, tangibility and Frank Zappa



These are your friends



SCRIPTING BASICS AND CONCEPTS



Why? DRY, that’s why.

• DRY – Don’t Repeat Yourself

– Repetition opens the door for human error

– Productivity lost when manual processes are used

– Scheduling is not firm, nor is it guaranteed

– Scripts don’t get the flu



ABC

• A    always

• B    be

• C coding



You only get better with practice

• More exposure to scripting increases your 
base of knowledge

• PowerShell is becoming an industry standard 
for many infrastructure systems

• Windows Server 8 extends even further with 
PowerShell v3



Don’t hesitate, automate!



Win with scripting!

• Automate current tedious processes

• Build maintenance tasks easily with native 
scripting tools

• Design and standardize installations and 
application configurations using scripts

• Be prepared for when scripting is a 
requirement during issues and emergencies



But I can’t control it when it’s automated?

• Many administrators do 
not trust automated 
processes

• The machine will never 
become smarter than 
the creator

• The robots have yet to 
replace the people who 
built them



DOCUMENTATION



I write documentation!



Challenge yourself…

• Create one new and one legacy document a 
week

• You will learn as you write. 

• Teaching others forces us to teach ourselves 
first

• Testing and Documentation are usually the 
first victims when reeling in project timelines





What does sharing do for you?

• Opens up for new ideas and opinions

• Pair programming concept realized through 
social means (internally or externally)

• Create a repository for others who are in 
similar situations

• Improves your ability to write documentation 
and code



Let’s Get to the Coding



But I’m not a coder!

Not necessary. Simple scripting is just that. 
Simple. Grow with your comfort level as you 
learn.



3 types of scripting

• Report

– Tell me about point in time information

• Monitor

– Information gathering over a period of time

• Act

– Take action based on a set of criteria



The one question quiz about your 
script



You are totally…

Right

Wrong

All of the above



Code is never complete

You will always be revisiting code because:

• Products and source data change

• You learn different techniques

• Digital rot happens

• It just makes sense



The art of refactoring



TDD – Test Driven Development

• Not just for application development

• It should not work the first time

• No seriously…it is supposed to fail

• Handling exceptions requires repetition



Testing the process

• If you don’t already have one, create a test 
environment

• It is seldom said that a script or application 
was tested too much



What If?

• In many PowerShell CmdLets there is a 
parameter –WhatIf

• The WhatIf parameter test drives the action 
without committing the change



Comment, Comment, Comment

• Comments in PowerShell begin with #

• Use comments to walk the reader through the 
natural flow of the script

• You totally understand the script now. Just 
wait 3 months and you will find out how short 
term memory fades



Logging



Logging to the console

• Output to screen as you build

• Use Write-Host with your parameters to 
confirm results



Logging to file

• Use the Out-File CmdLet to direct output to 
the filesystem

• Use the –append option

$win7Computers=Get-ADComputer -Filter {OperatingSystem -like "Windows 7*"} –Properties *

ForEach ($win7Computer in $win7Computers) {

$win7ComputerName = $win7Computer.name

$win7OU = $win7Computer.DistinguishedName –replace “$win7Computername.”,””

$logOutput = “$win7ComputerName is located in $win7OU”

$logOutput | Out-File “X:\path\win7Computers.txt” –append

}



Readability

• Comments are key, but readability is equally 
important

• Space, tab, and comment to make the script 
more natural to the eyes when revisiting





Readability

This is a tick: Not Good This is a backtick: Good



Using the backtick

• By adding a backtick, you can extend a 
command onto multiple lines



The art of the one-liner

“Doctor, my leg hurts. What can I do?” The doctor says, “Limp!”



Pipeline

• Passing output from one CmdLet into another 
CmdLet

• Uses the pipe symbol:  | 

Example: 

Get-VM | sort PowerState



Pipelines can be extended

Export a list of all non-server OS computers into 
a CSV format where the computer account 
hasn’t contacted AD for over 30 days

Get-ADcomputer -Filter { OperatingSystem -notlike “Windows Server*” } -Properties 
PasswordLastSet | Where-Object { (((Get-Date) – $_.PasswordLastSet).Days) -gt 30} |
select-object Name, @{Name=”Age”;Expression={ (((Get-Date) – $_.PasswordLastSet).
Days) }} | Export-CSV ComputerListByAge.csv



Operators



Operators for PowerShell

Mathematical

+,-,*,/,=

Replace

-replace (e.g. “It is sunny” –replace “sunny”,”cloudy”)

-ireplace (case insensitive replace)

-creplace (case sensitive replace)

Value

-is

-isnot



Comparison Operators for PowerShell

Used for numeric and string comparisons
-lt (less than)
-le (less than or equal to)
-gt (greater than)
-ge (greater than or equal to)
-like (wildcard pattern matching)
-notlike (wildcard pattern matching)
-match (regular expression pattern matching)
-notmatch (reg. expression pattern matching)
-contains (returns $True or $False result)
-notcontains (returns $True or $False)



Bitwise and Logical Operators

• Used for inclusive or exclusive operations
-and

-or

-xor

-not

-band

-bor

-bxor

-bnot



Brackets

No, not those brackets…



Brackets

• Understand where you need brackets (aka 
parentheses)

• Order is important

• Mathematical operations use BEDMAS logic

• Command operations use parenthetical order

• Not always necessary



Brackets

• Valid

$yesterday = (Get-Date).AddDays(-1)

• Also valid, but unnecessary

$yesterday = ((Get-Date).AddDays(-1))



Arrays

• Gather data as an array

$AllVMs = Get-VM

• Access array elements (remember first element is 0)

$AllVMs[0]

• Access properties

$AllVMs[0].PowerState

• Count elements in an array

$AllVMs.count



Clean up after your pet

Clear-Variable $variablename

[gc]::collect()

[gc]::WaitForPendingFinalizers()



Modules and Snapins



Extending the reach of your shell 
environment 

• PowerCLI

• Exchange 2007/2010

• SQL 2008 or higher

• Active Directory 2008 or higher

• Quest ActiveRoles

Import-Module Add-PSSnapin



One shell to rule them all

• Create a script named MyConsole.ps1

# Import the Active Directory extensions
Import-Module ActiveDirectory
# Log in to vCenter to allow remote management
Connect-VIServer <Your vCenter Server Name Here>
# Create and import a PowerShell remote session to let you run 
# Exchange 2010 commands from your single shell
$Session = New-PSSession -ConfigurationName Microsoft.Exchange -
ConnectionUri http://<FQDN of Exchange 2010 server>/PowerShell/ -
Authentication Kerberos
Import-PSSession $Session
# Add the Quest PowerShell snapin
Add-PsSnapIn Quest.ActiveRoles.ADManagement -ErrorAction SilentlyContinue



Let’s Get going

• First project: Get everything…literally

Get-VM

Get-VMHost

Get-Help Get*

Get-Command Get*



Where is my output?



Format-List
Get-VMHost | Format-List
Get-VMHost | fl



Format-Table -auto
Get-VMHost | Format-Table –auto
Get-VMHost | ft –auto

Maps to your console width



Start small and build

Get-Cluster | Get-VMHost | Get-VM

Connect-VIServer



PUTTING IT ALL TOGETHER



What did we learn?

• PowerShell is a directional strategy for many 
vendors

• Leverage -WhatIf wherever possible

• Fail early, fail often (It’s an IBM thing)

• Commenting takes time, but makes you a hero

• Log your process

• Readability is key

• Practice, practice, practice



Much, much more

• Sorting

• Out-GridView

• Regular Expressions

• String conversion

• Memory management



How do I get help?

• Get-Help *

• Get-Help CmdLet

• PowerCLI Community (Search PowerCLI on 
http://vmware.com)

• TechNet Gallery 
http://gallery.technet.microsoft.com

• Twitter - #PowerShell #PowerCLI

• DiscoPosse.com 

http://vmware.com/
http://gallery.technet.microsoft.com/


Let PowerShell and PowerCLI do this for you

Go from this, to…


