
Admin Scripting, Tips and Tricks

Managing your environment with
simple effective scripting techniques

Eric Wright

Using the chicken to measure IT?

Measurability, tangibility and Frank Zappa

These are your friends

SCRIPTING BASICS AND CONCEPTS

Why? DRY, that’s why.

• DRY – Don’t Repeat Yourself

– Repetition opens the door for human error

– Productivity lost when manual processes are used

– Scheduling is not firm, nor is it guaranteed

– Scripts don’t get the flu

ABC

• A always

• B be

• C coding

You only get better with practice

• More exposure to scripting increases your
base of knowledge

• PowerShell is becoming an industry standard
for many infrastructure systems

• Windows Server 8 extends even further with
PowerShell v3

Don’t hesitate, automate!

Win with scripting!

• Automate current tedious processes

• Build maintenance tasks easily with native
scripting tools

• Design and standardize installations and
application configurations using scripts

• Be prepared for when scripting is a
requirement during issues and emergencies

But I can’t control it when it’s automated?

• Many administrators do
not trust automated
processes

• The machine will never
become smarter than
the creator

• The robots have yet to
replace the people who
built them

DOCUMENTATION

I write documentation!

Challenge yourself…

• Create one new and one legacy document a
week

• You will learn as you write.

• Teaching others forces us to teach ourselves
first

• Testing and Documentation are usually the
first victims when reeling in project timelines

What does sharing do for you?

• Opens up for new ideas and opinions

• Pair programming concept realized through
social means (internally or externally)

• Create a repository for others who are in
similar situations

• Improves your ability to write documentation
and code

Let’s Get to the Coding

But I’m not a coder!

Not necessary. Simple scripting is just that.
Simple. Grow with your comfort level as you
learn.

3 types of scripting

• Report

– Tell me about point in time information

• Monitor

– Information gathering over a period of time

• Act

– Take action based on a set of criteria

The one question quiz about your
script

You are totally…

Right

Wrong

All of the above

Code is never complete

You will always be revisiting code because:

• Products and source data change

• You learn different techniques

• Digital rot happens

• It just makes sense

The art of refactoring

TDD – Test Driven Development

• Not just for application development

• It should not work the first time

• No seriously…it is supposed to fail

• Handling exceptions requires repetition

Testing the process

• If you don’t already have one, create a test
environment

• It is seldom said that a script or application
was tested too much

What If?

• In many PowerShell CmdLets there is a
parameter –WhatIf

• The WhatIf parameter test drives the action
without committing the change

Comment, Comment, Comment

• Comments in PowerShell begin with #

• Use comments to walk the reader through the
natural flow of the script

• You totally understand the script now. Just
wait 3 months and you will find out how short
term memory fades

Logging

Logging to the console

• Output to screen as you build

• Use Write-Host with your parameters to
confirm results

Logging to file

• Use the Out-File CmdLet to direct output to
the filesystem

• Use the –append option

$win7Computers=Get-ADComputer -Filter {OperatingSystem -like "Windows 7*"} –Properties *

ForEach ($win7Computer in $win7Computers) {

$win7ComputerName = $win7Computer.name

$win7OU = $win7Computer.DistinguishedName –replace “$win7Computername.”,””

$logOutput = “$win7ComputerName is located in $win7OU”

$logOutput | Out-File “X:\path\win7Computers.txt” –append

}

Readability

• Comments are key, but readability is equally
important

• Space, tab, and comment to make the script
more natural to the eyes when revisiting

Readability

This is a tick: Not Good This is a backtick: Good

Using the backtick

• By adding a backtick, you can extend a
command onto multiple lines

The art of the one-liner

“Doctor, my leg hurts. What can I do?” The doctor says, “Limp!”

Pipeline

• Passing output from one CmdLet into another
CmdLet

• Uses the pipe symbol: |

Example:

Get-VM | sort PowerState

Pipelines can be extended

Export a list of all non-server OS computers into
a CSV format where the computer account
hasn’t contacted AD for over 30 days

Get-ADcomputer -Filter { OperatingSystem -notlike “Windows Server*” } -Properties
PasswordLastSet | Where-Object { (((Get-Date) – $_.PasswordLastSet).Days) -gt 30} |
select-object Name, @{Name=”Age”;Expression={ (((Get-Date) – $_.PasswordLastSet).
Days) }} | Export-CSV ComputerListByAge.csv

Operators

Operators for PowerShell

Mathematical

+,-,*,/,=

Replace

-replace (e.g. “It is sunny” –replace “sunny”,”cloudy”)

-ireplace (case insensitive replace)

-creplace (case sensitive replace)

Value

-is

-isnot

Comparison Operators for PowerShell

Used for numeric and string comparisons
-lt (less than)
-le (less than or equal to)
-gt (greater than)
-ge (greater than or equal to)
-like (wildcard pattern matching)
-notlike (wildcard pattern matching)
-match (regular expression pattern matching)
-notmatch (reg. expression pattern matching)
-contains (returns $True or $False result)
-notcontains (returns $True or $False)

Bitwise and Logical Operators

• Used for inclusive or exclusive operations
-and

-or

-xor

-not

-band

-bor

-bxor

-bnot

Brackets

No, not those brackets…

Brackets

• Understand where you need brackets (aka
parentheses)

• Order is important

• Mathematical operations use BEDMAS logic

• Command operations use parenthetical order

• Not always necessary

Brackets

• Valid

$yesterday = (Get-Date).AddDays(-1)

• Also valid, but unnecessary

$yesterday = ((Get-Date).AddDays(-1))

Arrays

• Gather data as an array

$AllVMs = Get-VM

• Access array elements (remember first element is 0)

$AllVMs[0]

• Access properties

$AllVMs[0].PowerState

• Count elements in an array

$AllVMs.count

Clean up after your pet

Clear-Variable $variablename

[gc]::collect()

[gc]::WaitForPendingFinalizers()

Modules and Snapins

Extending the reach of your shell
environment

• PowerCLI

• Exchange 2007/2010

• SQL 2008 or higher

• Active Directory 2008 or higher

• Quest ActiveRoles

Import-Module Add-PSSnapin

One shell to rule them all

• Create a script named MyConsole.ps1

Import the Active Directory extensions
Import-Module ActiveDirectory
Log in to vCenter to allow remote management
Connect-VIServer <Your vCenter Server Name Here>
Create and import a PowerShell remote session to let you run
Exchange 2010 commands from your single shell
$Session = New-PSSession -ConfigurationName Microsoft.Exchange -
ConnectionUri http://<FQDN of Exchange 2010 server>/PowerShell/ -
Authentication Kerberos
Import-PSSession $Session
Add the Quest PowerShell snapin
Add-PsSnapIn Quest.ActiveRoles.ADManagement -ErrorAction SilentlyContinue

Let’s Get going

• First project: Get everything…literally

Get-VM

Get-VMHost

Get-Help Get*

Get-Command Get*

Where is my output?

Format-List
Get-VMHost | Format-List
Get-VMHost | fl

Format-Table -auto
Get-VMHost | Format-Table –auto
Get-VMHost | ft –auto

Maps to your console width

Start small and build

Get-Cluster | Get-VMHost | Get-VM

Connect-VIServer

PUTTING IT ALL TOGETHER

What did we learn?

• PowerShell is a directional strategy for many
vendors

• Leverage -WhatIf wherever possible

• Fail early, fail often (It’s an IBM thing)

• Commenting takes time, but makes you a hero

• Log your process

• Readability is key

• Practice, practice, practice

Much, much more

• Sorting

• Out-GridView

• Regular Expressions

• String conversion

• Memory management

How do I get help?

• Get-Help *

• Get-Help CmdLet

• PowerCLI Community (Search PowerCLI on
http://vmware.com)

• TechNet Gallery
http://gallery.technet.microsoft.com

• Twitter - #PowerShell #PowerCLI

• DiscoPosse.com 

http://vmware.com/
http://gallery.technet.microsoft.com/

Let PowerShell and PowerCLI do this for you

Go from this, to…

