
Running PowerShell Core using Docker

More and more of the Microsoft ecosystem is making its way into open source platforms. One of the
very interesting products coming from the Microsoft camp lately is the PowerShell Core platform
which is now ported to run on multiple underlying operating system environments.

I covered the process to install the Mac OSX version which is very cool, but let’s take the abstraction
one level higher and look at running the PowerShell core inside a Docker candidate.

The first thing you’ll want to do is head on over here to make sure you’re running the nifty Docker
Toolbox for your laptop or desktop environment if you haven’t already got Docker available to use.

Running your first PowerShell Core container

The commands here may seem a little too easy, but that’s by design. The containerized
implementation makes the deployment and use of PowerShell core super easy!

Let’s launch our first container with the docker run -it microsoft/powershell that will kick
up a new container based on the image which is in the Docker public hub under the Microsoft
organization. The -it means that we are launching in an interactive mode inside the container.

That gets you up and running to be able to run the PowerShell environment.

NOTE: There is still limited functionality compared to the full PowerShell on Microsoft
environments. This is something that is changing with each release as the community and Microsoft
themselves contribute towards more features.

Exiting and re-entering the container

Getting out of the container is as easy as typing exit and the prompt. This will bring you back out to
the local environment. That gives is an interesting situation where we have the container present,
but it is stopped. If you run the same command as you did before, that actually launches an entirely
new container.

We need to do three things in order to get back in to the same container:

https://discoposse.com/2017/01/19/running-powershell-core-using-docker/
https://github.com/PowerShell/PowerShell
https://turbonomic.com/blog/on-technology/powershell-on-mac-os-because-cross-platform-awesome/
https://discoposse.com/2017/01/18/installing-and-using-docker-toolbox-for-mac-osx-and-windows/
https://discoposse.com/2017/01/18/installing-and-using-docker-toolbox-for-mac-osx-and-windows/
https://discoposse.com/wp-content/uploads/2017/01/docker-run-powershellcore.png


find the ID of the existing container1.
start the container using that ID2.
attach to the container3.

First, let’s check the containers to find out the ID of the one we want using the docker ps -a
command:

Use the docker start [CONTAINER-ID] command where [CONTAINER-ID] is the ID you see in
your console:

Use the same ID and attach to the now active container with the docker attach [CONTAINER-
ID] command:

That is all there is to it! Each time you exit, the container will automatically stop because we don’t
need to keep it running in the background. There are other ways to keep it running, but that is for
another blog post �

Removing the container is as simple as running the docker rm [CONTAINER-ID] where
[CONTAINER-ID] is the ID we used before to attach to the existing container.

https://discoposse.com/wp-content/uploads/2017/01/docker-ps-findid.png
https://discoposse.com/wp-content/uploads/2017/01/docker-start.png
https://discoposse.com/wp-content/uploads/2017/01/docker-attach.png

