
PowerShell for Microsoft Exchange Message
Tracking

As a Microsoft Exchange 2010 administrator I am often asked to get information about
messages that have been sent, received, or that didn’t get to or from their destination. Microsoft
provides the Message Tracking tools to be able to do this from the Exchange Management Console
in Exchange 2010.

In Microsoft Exchange 2003 the Message Tracking feature entirely based in the administrative
console, but luckily since Exchange 2007 we have been able to access the same features and
functions using PowerShell and the Exchange Management Shell.

Let’s assume that you have been asked by someone in your client environment who needed to see if
an email was received properly. They provide you with the information that you request which will
be the sender address (someaddress@yourdomain.com), subject (Important information that I need
feedback on) and a time window in which to search (May 25th between 5-8:30 AM).

Using this criteria, we will feed parameters to the Get-MessageTrackingLog CmdLet as follows:

get-messagetrackinglog -Sender someaddress@yourdomain.com -MessageSubject
“Important information that I need feedback on” -Start “5/25/2012 5:00:00 AM” -End
“5/25/2012 8:30:00 AM”

No really, it is just that easy. You can get the same results through the Exchange Management
Console, but by using the PowerShell environment you can also take the results and perform actions
against them such as further filtering, sorting and passing the information to and from other
processes or to output files.

This is one if the many very handy CmdLets to have ready for administering your environment. This
can be run from the server console or you may also run it from a workstation which has the
Exchange Management Shell installed locally. This is how I do most of my Exchange 2010
PowerShell management which reduces the need to be logging onto server consoles unnecessarily.

I hope that this saves you some time, and feel free to experiment with the parameters and using the
pipeline features of PowerShell to manage the results for your specific needs. The TechNet article
for the Get-MessageTrackingLog CmdLet can be found here:
http://technet.microsoft.com/en-us/library/aa997573.aspx

Happy Scripting!

https://discoposse.com/2012/06/17/powershell-for-microsoft-exchange-message-tracking/
https://discoposse.com/2012/06/17/powershell-for-microsoft-exchange-message-tracking/
http://technet.microsoft.com/en-us/library/aa997573.aspx

PowerShell – Copy Exchange 2010 Receive
Connectors Between Servers

The situation that many Exchange administrators are in, is a simple one. Multiple CAS servers for
redundancy and fault tolerance, as well as load balancing either inside the cluster, or on the outside
using something like a Citrix Netscaler or F5 device. This is a natural design for Exchange 2010 and
provides great functionality and recovery capability.

There are also many designs which use a single server, or perhaps a single server per site contains
Receive Connectors for inbound relay based on a set of criteria such as auth type or network range.

The challenge for Receive Connectors, and especially with network ranges applied, is that they are
difficult to re-create on another server. Whether it is on your first creation, or if you want to make a
copy on another server for active or passive use, PowerShell can be your best friend for this task.

Assuming that we have two servers named EXSITE1 and EXSITE2 where we have created our
Receive Connector named Default-App-Connector on EXSITE1 but we want to have it on
EXSITE2. While we can create one easily enough using the New-ReceiveConnector CmdLet we
have to type in all of the IP ranges manually which is both tedious and error prone.

Here is your solution. The basic command for creating the new backup connector is:

New-ReceiveConnector “Default-App-Connector” -Server EXSITE2 -Bindings 0.0.0.0:25

The problem is that this only creates the connector, but not the IP ranges. As I mentioned, if we type
the allowed IP addresses and ranges into the command using the -RemoteIPRanges parameter I
have a lot of work ahead of me.

So we simply read the -RemoteIPRanges from the first connector and pass them to the New-
ReceiveConnector CmdLet just like so:

New-ReceiveConnector “Default-App-Connector” -Server EXSITE2 -Bindings 0.0.0.0:25 -
RemoteIPRanges (Get-ReceiveConnector “EXSITE1Default-App-Connector”
).RemoteIPRanges

You can also use the Get-ReceiveConnector to document your configuration to file, which is a good
practice for BCP. Because these can be volatile, I recommend you export to disk, or replicate to the
second server weekly or monthly.

Simply use this command:

Get-ReceiveConnector “EXSITE1Default-App-Connector” | Format-List | Out-File
“X:ExchangeConfigurationDefault-App-Connector.txt”

It’s just that easy. A simple command that can provide peace of mind and protection. Hopefully you

https://discoposse.com/2012/04/21/powershell-copy-exchange2010-receive-connectors/
https://discoposse.com/2012/04/21/powershell-copy-exchange2010-receive-connectors/

find this to be helpful.

Exchange 2010 SP2 and Citrix Netscalers –
SSL gotcha

This is a quick note about a real issue that I ran into very recently. With the Microsoft Exchange
2010 SP2 update there are a number of things to be careful of. With any of the major rollups and
service packs, there are often default configuration settings which are re-enabled as a part of the
update.

If you’ve been running Exchange with Outlook Web Access then you have most likely hit the first of
two issues which is that any customized OWA pages (logon, logoff etc.) are overwritten during
updates. Make sure that you save any custom configurations, and if you have configured a different
default theme to be used by your CAS servers in 2010, you may also have to reset the default again
to your chosen theme.

The second issue which will really twist you up is if you are using a Network Load Balancer (NLB)
such as the Citrix Netscaler appliance. The reason that this is an issue is because of the SSL offload
capability which is one of the great advantages of these devices.

During the update of the CAS roles to SP2, the Default Web Site suddenly disappeared from the
active monitoring despite the fact that the site itself was still up when accessed directly from the
local server using the https://yourservername/owa URL. The key to this is that during the update the
SSL option was re-enabled on the Default Web Site for the CAS server.

Because we use the NLB for managing the SSL we can safely uncheck the SSL Required option
within IIS and as if by magic, the site is now available again through the load balanced
configuration.

Importing, and Updating Exchange 2010
Contacts from CSV

I’ve had a very specific requirement to add a list of external contacts into an internal Microsoft
Exchange environment. The goal of this is to integrate an external company’s list of contacts and

https://discoposse.com/2012/03/06/exchange-2010-sp2-citrix-netscalers-ssl-gotcha/
https://discoposse.com/2012/03/06/exchange-2010-sp2-citrix-netscalers-ssl-gotcha/
https://discoposse.com/2012/02/10/importing-and-updating-exchange-2010-contacts-from-csv/
https://discoposse.com/2012/02/10/importing-and-updating-exchange-2010-contacts-from-csv/

some key information into the Global Address List with an identifier on each record showing the
company name as part of the display name.

Importing and Updating Exchange Contacts from CSV
Before we go further, I want to qualify the process and subsequent script which supports it. This
article, and the script is designed towards the intermediate to advanced PowerShell admin. By this I
mean that I haven’t exhaustively documented all of the commands and steps. The article is
presented in full length so I apologize for the long read.

The requirements for the script are as follows:

The contacts must appear in the Global Address List along with existing mail accounts
Display names contain the company name as a suffix to differentiate from employees
Updates include a number of fields such as address, title, phone number, name
Source system uses legal name and informal name. We want to display the informal name (i.e.
Chuck vs. Charles)
Updates will be done programatically and fairly frequently (let’s assume weekly)
Updates cannot impact existing mailflow (Must update rather than delete and re-create)
The script was designed to run using the Microsoft Exchange 2010 Command Shell

The file that we receive will be in CSV format and has a header row. This is a saving grace as we can
easily manage the content easily using the column header inside a ForEach loop.

THE FILE
The columns that we receive and a description is shown below:

EMail (SMTP formatted address)
InformalName (If FirstName is different than the name used commonly)
FirstName (Legal first name)
Lastname (Last name)
BranchCode (Each branch is assigned a code in our example)
BranchLegalName (Branch description)
AddressLine1 (Address information)
AddressLine2 (Address information if needed)
AddressCity (City name)
AddressState (State or province)
AddressZip (ZIP or Postal Code)
AddressCountry (Country in ISO code format)
JobTitle (Job title)
PhoneCountryCode (If exists for non-North American numbers)
PhoneAreaCode (Area code)
PhoneNumber (Phone number in ###-#### format)
PhoneExtensionOrSpeedDial (Extension or speed dial number if it exists)

That’s a lot of information and because it comes from an external system, the fields don’t match up
one-to-one with the native Microsoft Exchange fields which are associated with a mail contact.

THE DESIGN
Now we get to the good stuff! Here is the logic of how I built the script that is used:

Read the file1.
Loop through the contacts in the file2.
Check to see if the contact exists3.
If it doesn’t exists, create it4.
If the contact exists, update it5.
Loop ends6.
Read the OU where we store the contacts7.
Read the file8.
Loop through the contacts in AD9.
Check to see if the contact exists in the file10.
If it doesn’t exist, delete it11.
If it exists, do nothing12.
Loop ends13.

Thanks to the magic of PowerShell this is a fairly simple task. We will use the following CmdLets to
accomplish our task:

Import-CSV
ForEach
If, Else, ElseIf
Get-Contact (Exchange 2010)
Set-MailContact (Exchange 2010)
Set-Contact (Exchange 2010)
New-MailContact (Exchange 2010)
Get-Content
Write-Host

I’ve used the Write-Host CmdLet to output to screen so that we can troubleshoot and monitor the
process during the initial tests. Another important feature we use for testing is the -WhatIf
parameter. I’ll give the necessary disclaimer here which is that you must run this in a test
environment and using the WhatIf parameter first! It’s not that I don’t know that the script works,
but regardless of my confidence, it is an absolute must that you test any process in an alternate
environment before you go live.

THE SCRIPT
Hold on to your hats because this is a big one. We will step through the script together in sections to
show what’s happening along the way.

Set the file location
$rawfile = “X:SCRIPTScontacts.csv”

Ignore Error Messages and continue on. Comment this out with a # symbol if you
need verbose errors
trap [Microsoft.Exchange.Configuration.Tasks.ManagementObjectNotFoundException] {
continue; }

$contactfile = Import-CSV $rawfile

In this section we’ve identified the location of the import file (assume X:SCRIPTS for the path and a
filename of contacts.csv), as well as setting the alerts to continue on error. Note that this is not
alwasy 100% effective and may require some tweaking which I’ll update as I make more progress
with the error handling. Next we see that the file is imported into the $contactfile as an array.

Next up we will loop through the records and assign working variables to based on the contents of
each record. For the name fields there have been some issues where people have names containing
spaces (e.g. FirstName=Mary Jane) which will cause the import to fail. For these cases we will use a
-replace option when assigning the value to the variable and replace the spaces with hyphens.

Read contacts and make the magic happen
ForEach ($contact in $contactfile) {

Read all attributes provided by the file
$sourceEMail=$contact.EMail
$sourceInformalName=$contact.InformalName -replace ” “,”-”
$sourceFirstName=$contact.FirstName -replace ” “,”-”
$sourceLastName=$contact.LastName -replace ” “,”-”
$sourceManagerID=$contact.ManagerID
$sourceBranchCode=$contact.BranchCode
$sourceBranchLegalName=$contact.BranchLegalName
$sourceAddressLine1=$contact.AddressLine1
$sourceAddressLine2=$contact.AddressLine2
$sourceAddressLine3=$contact.AddressLine3
$sourceAddressCity=$contact.AddressCity
$sourceAddressState=$contact.AddressState
$sourceAddressZip=$contact.AddressZip
$sourceAddressCountry=$contact.AddressCountry
$sourceJobTitle=$contact.JobTitle
$sourcePhoneCountryCode=$contact.PhoneCountryCode
$sourcePhoneAreaCode=$contact.PhoneAreaCode
$sourcePhoneNumber=$contact.PhoneNumber
$sourcePhoneExtensionOrSpeedDial=$contact.PhoneExtensionOrSpeedDial

Now we will take the variables which have been assigned and begin to manipulate the data into
fields where we require concatenation of the data. This is also where we do the logical checks for
the InformalName field by checking the length of the field. If the field is greater than a zero length
then it will be used for the First Name attribute on the contact.

We also craft the Display Name by concatenating the calculated First Name, the Last Name and the
trailing suffix of COMPANY (you can change that to be whatever identifier you want). Address and
phone number are fairly simple, but again we check for field values of zero length to decide if we
need to include them in the concatenated results.

Lastly in this section we create the Alias which must be unique. We prefix with COMPANY again to
ensure they are different than our existing user records and make them easily searchable.

 # Create the concatenated fields and custom fields

Informal Name – This checks to see if they have an informal name (Jim versus James)
and if so, use the informal name
if ($sourceInformalName.Length -lt 1) {
$targetFirstName = $sourceFirstName
}
elseif ($sourceInformalName.Length -gt 1) {
$targetFirstName = $sourceInformalName
}

Assign the Display Name using the correct First Name, Last Name and a suffix of
COMPANY. We trim this field because of leading spaces that show up regularly
$sourceDisplayName = “$targetFirstName $sourceLastName COMPANY”
$targetDisplayName = $sourceDisplayName.Trim()

Assign the Distinguished Name attribute using the correct First Name, Last Name and
OU structure
$targetDistinguishedName = “CN=$targetFirstName
$sourceLastName,OU=ExternalContacts,DC=yourdomain,DC=com”

Assemble the phone number

Check for a country code, otherwise value is null
if ($sourcePhoneCountryCode -lt 1) {
$targetCountryCode = $null
}
elseif ($sourcePhoneCountryCode -gt 1) {
$targetCountryCode = “$sourceCountryCode-”
}

Check for an extension, otherwise value is null
if ($sourcePhoneExtensionOrSpeedDial -lt 1) {
$targetExtension = $null
}
elseif ($sourcePhoneExtensionOrSpeedDial -gt 1) {
$targetExtension = ” ext. $sourcePhoneExtensionOrSpeedDial”
}

$targetPhoneNumber = “$targetCountryCode$sourcePhoneAreaCode-
$sourcePhoneNumber$targetExtension”
Assemble the Address
$targetStreetAddress = “$sourceAddressLine1 $sourceAddressLine2
$sourceAddressLine3”

Assign the name attribute for new contacts
$targetCommonName = “$sourceFirstName $sourceLastName”

Assign the Alias using COMPANY as a prefix so that we can identify them easily
$targetAlias = “COMPANY$targetFirstName$sourceLastName”

So what we have got now is a working set of data to begin to apply to our Exchange environment.

The next step is to search Active Directory/Exchange for the contact to see if they are existing.

###
Search for the contact to see if it is existing
###

if (Get-Contact -Identity $sourceEmail)
{
Output to screen so we can track the process. Comment the following line when it is
running as a batch process
Write-Host $sourceEmail Exists so $targetDisplayName will be MODIFIED -
foregroundcolor green

Set-MailContact -Identity $sourceEmail -Alias $targetAlias -ForceUpgrade
Set-Contact -Identity $sourceEmail `
-City $sourceAddressCity `
-Company $sourceBranchLegalName `
-CountryOrRegion $sourceAddressCountry `
-Department $sourceBranchCode `
-DisplayName $targetDisplayName `
-SimpleDisplayName $targetDisplayName `
-Name “$targetCommonName” `
-FirstName $targetFirstName `
-LastName $sourceLastName `
-Phone $targetPhoneNumber `
-PostalCode $sourceAddressZip `
-StateOrProvince $sourceAddressState `
-StreetAddress $targetStreetAddress `
-Title $sourceJobTitle `
-WebPage “RJFAccountFlag” `
-WindowsEmailAddress $sourceEmail -WhatIf
}

Notice that we have done 2 important things in the Set-Contact CmdLet phrasing. For readability we
use the ` character which allows you to span multiple lines in a single command. Be careful that you
note that it is the reverse single quote (found on the tilde ~ button) and not the traditional single
quote ‘ found by the Enter Key. Secondly we have tagged the command with the -WhatIf parameter
to monitor the potential result.

###
If it is not existing, create a new contact
###
else
{
Output to screen so we can track the process. Comment the following line when it is
running as a batch process
Write-Host $sourceEmail Does Not Exist so $targetDisplayName will be CREATED -
foregroundcolor yellow

First we create the contact with the required properties
New-MailContact -Name “$targetCommonName” `
-OrganizationalUnit “OU=ExternalContacts,DC=yourdomain,DC=com” `
-ExternalEmailAddress $sourceEmail `
-Alias $targetAlias `
-DisplayName $targetDisplayName `
-FirstName $targetFirstName `
-LastName $sourceLastName `
-PrimarySmtpAddress $sourceEmail -WhatIf

Now we set the additional properties that aren’t accessible by the New-MailContact
cmdlet
Set-Contact -Identity $sourceEmail `
-City $sourceAddressCity `
-Company $sourceBranchLegalName `
-CountryOrRegion $sourceAddressCountry `
-Department $sourceBranchCode `
-DisplayName $targetDisplayName `
-SimpleDisplayName $targetDisplayName `
-FirstName $targetFirstName `
-LastName $sourceLastName `
-Phone $targetPhoneNumber `
-PostalCode $sourceAddressZip `
-StateOrProvince $sourceAddressState `
-StreetAddress $targetStreetAddress `
-Title $sourceJobTitle `
-WebPage “RJFAccountFlag” `
-WindowsEmailAddress $sourceEmail -WhatIf
}

Clean up after your pet – this does some memory cleanup
[System.GC]::Collect()
[System.GC]::WaitForPendingFinalizers()
}

For a new contact we had to perform two steps. The first step is to create the contact with the
required attributes. There are limited attributes that can be affected with the New-MailContact
CmdLet unfortunately, so we follow that command with a Set-Contact to update the remaining
attributes that we need.

The section I’ve named as “Clean up after your pet” is a little memory cleansing process. Let’s just
say that if you skip this step you will find yourself about 4GB deep in memory usage and crawling
your way through the contact script.

The last portion of our script is the deletion process. Let me reiterate the importance of testing on
this. If there is an error with the reading of the file, or you use a sample file with less contacts it will
relentlessly delete them while you watch in horror. The -WhatIf has been put into the command
here also to help with the assurance testing.

##

############
Now we reverse the process and remove contacts no longer valid
If contact is not in the file, delete it
##
############

$CurrentContacts = Get-MailContact -OrganizationalUnit
‘OU=ExternalContacts,DC=yourdomain,DC=com’ -ResultSize Unlimited | Select-Object
PrimarySMTPAddress,name
ForEach ($contact in $currentContacts) {
$sourceEmail = $Contact.PrimarySMTPAddress
if (Get-Content $rawFile | Select-String -pattern $sourceEmail)
{
Output to screen so we can track the process. Comment the following line when it is
running as a batch process
Write-Host This contact $sourceEmail Exists in the file -foregroundcolor green
}
else
{
Output to screen so we can track the process. Comment the following line when it is
running as a batch process
Write-Host “DELETE THIS CONTACT $sourceEmail” -backgroundcolor yellow
Remove-MailContact -Identity “$sourceEmail” -Confirm:$Y -WhatIf
}
}

$CurrentContacts = $null
Clean up after your pet – this does some memory cleanup
[System.GC]::Collect()
[System.GC]::WaitForPendingFinalizers()

Congratulations! We’ve made it to the end. This script shows you the power and flexibility of
PowerShell. For your own situation you can work from this sample and hopefully it will save you
some development time.

This is quite a process to go through, so I encourage you to read through it and feel free to add
comments with any questions.

Here are the files associated with this process:

Contacts.csv (sample contact file)

ManageExternalContacts.ps1.txt (rename to .ps1 after download)

https://discoposse.com/wp-content/uploads/2016/10/contacts.csv
https://cdn.discoposse.com/wp-content/uploads/2012/02/ManageExternalContacts.ps11.txt

